NUS ecologists have developed improved methods for estimating biodiversity loss from habitat-clearing activities, to aid conservation planning.
A research team led by Prof Ryan CHISHOLM from Department of Biological Sciences, NUS have developed efficient mathematical formulas that incorporate the effect of habitat fragmentation to provide better estimates of species loss from land-clearing activities. The team achieved this by using novel rescaling techniques inspired by coalescence methods used in population genetics. The formulas permit rapid estimation of the upper (contiguous land clearing; minimum fragmentation) and lower (random land clearing; maximum fragmentation) bounds on species loss, which would otherwise require a large amount of computational effort if done through numerical simulations. Applying the new formulas to case studies, they found that immediate species loss is fairly insensitive to the exact pattern of habitat fragmentation at small scales (e.g. several hectares) but highly sensitive at larger scales (e.g. the Amazon rainforest). These tools and findings can help guide land planners in their biodiversity conservation efforts.
Prof Chisholm said, “When we applied the new formulas to estimate tree species loss in Singapore over the last 200 years, we found that the lower bound from our formulas, which assumes maximum fragmentation, was close to independent estimates of tree species loss from Singapore Botanic Gardens herbarium data. We speculate that this is because the forest in Singapore is quite fragmented, and so more tree species persist here (at least in the medium term) than would if the remaining forest were one contiguous block.”
While the new formulas published by the researchers allow for estimation of immediate species loss from habitat clearing, the researchers are now turning their attention to longer-term problems. In particular, they are studying the phenomenon of “extinction debt”, whereby species continue to be lost in the following decades or centuries after their habitat has been cleared.
The study is published in Ecology Letters.
Source: National University of Singapore [May 10, 2018]