New research by an international team including scientists from the Max Planck Institute for the Science of Human History, the University of Tübingen, EPFL Lausanne and the University of Zurich has revealed that there was much more diversity in the leprosy strains circulating in Medieval Europe than previously thought. This finding, based on the sequencing of 10 new ancient genomes from the leprosy-causing bacterium Mycobacterium leprae, complicates prior assumptions about the origin and spread of the disease, and also includes the oldest M. leprae genome sequenced to date, from about 400 AD in the United Kingdom.
![]() |
Skeletal remains showing evidence of leprosy from the Odense St. Jørgen cemetery in Denmark, which was established in 1270 and existed until 1560 [Credit: Dorthe Dangvard Pedersen] |
10 new ancient genomes of M. leprae dating from approximately 400-1400 AD
The current study examined approximately 90 individuals with skeletal deformations that were characteristic of leprosy, from across Europe and from time periods ranging from approximately 400 AD to 1400 AD. From these samples, 10 new medieval M. leprae genomes were fully reconstructed. These genomes represent all known strains, including strains that are today associated with different locations around the globe, including Asia, Africa and the Americas. Additionally, in this study multiple strains were often found in the same cemetery, illustrating the diversity of the leprosy strains circulating throughout the continent at the time.
![]() |
Skeletal remains from Great Chesterford showing evidence of leprosy. This is the oldest known case of leprosy in the United Kingdom [Credit: Sarah Inskip] |
Oldest leprosy genome to date
One M. leprae genome reconstructed by the team was from Great Chesterford, England, and dates to between 415-545 AD. This is the oldest M. leprae genome sequenced to date and comes from one of the oldest known cases of leprosy in the United Kingdom. Interestingly, this strain is the same found in modern-day red squirrels and supports the hypothesis that squirrels and the squirrel fur trade were a factor in the spread of leprosy among humans in Europe during the medieval period.
![]() |
Verena Schuenemann at the Palaeogenetics Laboratory, University of Tuebingen [Credit: Johannes Krause] |
The abundance of ancient genomes in the current study has resulted in a new and older estimate for the age of M. leprae than previous studies, placing its age at least a few thousand years old. "Having more ancient genomes in a dating analysis will result in more accurate estimates," explains Krause. "The next step is to search for even older osteological cases of leprosy than currently available, using well-established methods for identification of potential cases."
Source: Max Planck Society [May 10, 2018]